A comprehensive data set of lake surface water temperature over the Tibetan Plateau derived from MODIS LST products 2001–2015

نویسندگان

  • Wei Wan
  • Huan Li
  • Hongjie Xie
  • Yang Hong
  • Di Long
  • Limin Zhao
  • Zhongying Han
  • Yaokui Cui
  • Baojian Liu
  • Cunguang Wang
  • Wenting Yang
چکیده

Lake surface water temperature (LSWT) is sensitive to long-term changes in thermal structure of lakes and regional air temperature. In the context of global climate change, recent studies showed a significant warming trend of LSWT based on investigating 291 lakes (71% are large lakes, ≥50 km2 each) globally. However, further efforts are needed to examine variation in LSWT at finer regional spatial and temporal scales. The Tibetan Plateau (TP), known as 'the Roof of the World' and 'Asia's water towers', exerts large influences on and is sensitive to regional and even global climates. Aiming to examine detailed changing patterns and potential driven mechanisms for temperature variations of lakes across the TP region, this paper presents the first comprehensive data set of 15-year (2001-2015) nighttime and daytime LSWT for 374 lakes (≥10 km2 each), using MODIS (Moderate Resolution Imaging Spectroradiometer) Land Surface Temperature (LST) products as well as four lake boundary shapefiles (i.e., 2002, 2005, 2009, and 2014) derived from Landsat/CBERS/GaoFen-1 satellite images. The data set itself reveals significant information on LSWT and its changes over the TP and is an indispensable variable for numerous applications related to climate change, water budget analysis (particularly lake evaporation), water storage changes, glacier melting and permafrost degradation, etc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of land surface temperature retrieved from EOS/MODIS in Naqu area over Tibetan Plateau

Using split window algorithms developed by Sobrino, added a suff icient and simple cloud detection process for MODIS L1B data. Then based on land surface classif ication (land, water, snow & ice), retrieved four land surface temperature images for clear sky in Naqu area over Tibetan Plateau in January, April, June and October in 2007, respectively. After that the derived LST was compared with t...

متن کامل

Spatiotemporal Variations of Lake Surface Temperature across the Tibetan Plateau Using MODIS LST Product

Satellite remote sensing provides a powerful tool for assessing lake water surface temperature (LWST) variations, particularly for large water bodies that reside in remote areas. In this study, the MODIS land surface temperature (LST) product level 3 (MOD11A2) was used to investigate the spatiotemporal variation of LWST for 56 large lakes across the Tibetan Plateau and examine the factors affec...

متن کامل

Estimation of the Land Surface Temperature over the Tibetan Plateau by Using Chinese FY-2C Geostationary Satellite Data

During the process of land-atmosphere interaction, one of the essential parameters is the land surface temperature (LST). The LST has high temporal variability, especially in its diurnal cycle, which cannot be acquired by polar-orbiting satellites. Therefore, it is of great practical significance to retrieve LST data using geostationary satellites. According to the data of FengYun 2C (FY-2C) sa...

متن کامل

New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products

This paper discusses the lessons learned from analysis of the Moderate Resolution Imaging Spectroradiometer (MODIS) Land-Surface Temperature/Emissivity (LST) products in the current (V4) and previous versions, and presents eight new refinements for V5 product generation executive code (PGE16) and the test results with real Terra and Aqua MODIS data. The major refinements include considering sur...

متن کامل

Lake Chad Total Surface Water Area as Derived from Land Surface Temperature and Radar Remote Sensing Data

Lake Chad, located in the middle of the African Sahel belt, underwent dramatic decreases in the 1970s and 1980s leaving less than ten percent of its 1960s surface water extent as open water. In this paper, we present an extended record (dry seasons 1988–2016) of the total surface water area of the lake (including both open water and flooded vegetation) derived using Land Surface Temperature (LS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017